Рис. 4.7. Схема рельсовой цепи переменного тока частотой 50 Гц

Неразветвленные РЦ на участках с электрической тягой. На уча-' стках с электрической тягой рельсовые нити железнодорожного пути являются обратным проводом для пропускания тягового тока на подстанцию, поэтому в РЦ таких участков следует обеспечить непрерывное прохождение тягового тока, несмотря на то, что рельсы разделены изолирующими стыками для обеспечения работы РЦ. Для этой цели применяют двухниточные и однониточные РЦ. Двухниточные РЦ получили наибольшее распространение и используются на перегонах и станциях. В таких рельсовых цепях тяговый ток непрерывно пропускается по обеим рельсовым нитям пути с помощью дроссель-трансформаторов, которые устанавливаются по обе стороны изолирующего стыка.

Для обеспечения нормальной и надежной работы РЦ на участках с электротягой род и частота сигнального тока должны отличаться от рода и частоты тягового тока. Поэтому на участках с электротягой на постоянном токе РЦ питают переменным током промышленной частоты 50 Гц, а на участках с электротягой на переменном токе 50 Гц - переменным током частотой 25 Гц. Тяговые токи 1/0.5/т (рис. 4.8) протекают по обеим полуобмоткам ДТ во встречных направлениях, чем исключается влияние тягового тока на работу РЦ. В практических условиях тяговые токи в обеих рельсовых нитях не равны друг другу, так как сопротивление рельсовых нитей неодинаковое. Поэтому сердечник дроссель-трансформатора подвергается под-магничиванию, а аппаратура РЦ - влиянию гармоник тягового тока. Для исключения влияний гармоник тягового тока РЦ с путевым реле типа ИМВШ или ИВГ на электрифицированных участках делают с кодовым питанием, а для защиты от этого влияния самого реле устанавливаются