Математический подход к прогнозированию покупательского спроса заключается в расчленении его на основные составляющие элементы, среди которых выделяются: развитие спроса как основная тенденция, сезонные колебания спроса и случайные его колебания, для чего используют инструмент математической статистики. Нередко на практике прогнозирование спроса осуществляют только на базе средних значений. Некоторые компании для упрощения расчетов нередко осуществляют краткосрочное прогнозирование на базе значений величин спроса, которые в лучшем случае являются средними и не учитывают элемента неопределенности. Например, компания “Вольво” выполняет краткосрочное прогнозирование без учета сезонности спроса и других тенденций. Прогнозирование выполняется в зависимости от потребностей, по методу экспоненциального выравнивания.

Такие прогнозы обычно бывают чрезмерно оптимистическими, не учитывают элемента неопределенности и приводят к значительным колебаниям величин запасов. Более реальным является такое прогнозирование, в котором наряду со средним значением (математическим ожиданием) определяется и оценивается возможная ошибка. В связи с этим решаются задачи улучшения прогнозов и стратегии управления запасами с учетом ошибок прогнозирования спроса.

Компания “Renault”, например, при подготовке краткосрочных прогнозов спроса определяет текущий запас необходимых деталей в сети распределения и сбыта как среднюю величину ожидаемого спроса, путем графической экстраполяции данных прошлого спроса, а страховой запас - как величину, пропорциональную типовому отклонению закона распределения спроса в заданном периоде, учитывающую имевшиеся тенденции колебаний спроса. Компания установила в результате исследований, что распределение спроса в заданном интервале следует разным законам.